Question:
What are possible sources of error in this physics experiment?
anonymous
2009-09-27 11:45:04 UTC
We had to measure the horizontal distance traveled by a marble which rolled down a tube and through photogates off a table and onto the floor. The marble hit a sheet of carbon paper and left a mark which we measured from the bottom of the table. So what are some possible sources of error? My measured and predicted values had a 4.6% percentage difference.
Three answers:
M
2009-09-28 06:40:18 UTC
Possible sources of error could include anything you didn't factor into your calculations (Because you didn't say how you calculated your predicted values I'm just gonna list everything I can think of):



Friction with the table which would slow the ball down



Drag from the air (Inluding any drafts that could shift the position of the ball)



Mass (How exact was your measurement of the ball's mass? - also if you're using basic kinematic equations the mass is considered negligible...in reality it's not so that's also a source of error)



The accuracy of the method which you used to measure any distances (if you use a meterstick you can not really get any more accurate that 0.5 mm)



The ball's rotational inertia would also slow it down - if you didn't factor it in already...



This is all I could think of off the top of my head but there very well could be more.

Hope this helps :)
anonymous
2013-11-25 08:08:20 UTC
Incomplete definition (may be systematic or random) - One reason that it is impossible to make exact measurements is that the measurement is not always clearly defined. For example, if two different people measure the length of the same rope, they would probably get different results because each person may stretch the rope with a different tension. The best way to minimize definition errors is to carefully consider and specify the conditions that could affect the measurement.



Failure to account for a factor (usually systematic) - The most challenging part of designing an experiment is trying to control or account for all possible factors except the one independent variable that is being analyzed. For instance, you may inadvertently ignore air resistance when measuring free-fall acceleration, or you may fail to account for the effect of the Earth's magnetic field when measuring the field of a small magnet. The best way to account for these sources of error is to brainstorm with your peers about all the factors that could possibly affect your result. This brainstorm should be done before beginning the experiment so that arrangements can be made to account for the confounding factors before taking data. Sometimes a correction can be applied to a result after taking data, but this is inefficient and not always possible.



Environmental factors (systematic or random) - Be aware of errors introduced by your immediate working environment. You may need to take account for or protect your experiment from vibrations, drafts, changes in temperature, electronic noise or other effects from nearby apparatus.



Instrument resolution (random) - All instruments have finite precision that limits the ability to resolve small measurement differences. For instance, a meter stick cannot distinguish distances to a precision much better than about half of its smallest scale division (0.5 mm in this case). One of the best ways to obtain more precise measurements is to use a null difference method instead of measuring a quantity directly. Null or balance methods involve using instrumentation to measure the difference between two similar quantities, one of which is known very accurately and is adjustable. The adjustable reference quantity is varied until the difference is reduced to zero. The two quantities are then balanced and the magnitude of the unknown quantity can be found by comparison with the reference sample. With this method, problems of source instability are eliminated, and the measuring instrument can be very sensitive and does not even need a scale.



Failure to calibrate or check zero of instrument (systematic) - Whenever possible, the calibration of an instrument should be checked before taking data. If a calibration standard is not available, the accuracy of the instrument should be checked by comparing with another instrument that is at least as precise, or by consulting the technical data provided by the manufacturer. When making a measurement with a micrometer, electronic balance, or an electrical meter, always check the zero reading first. Re-zero the instrument if possible, or measure the displacement of the zero reading from the true zero and correct any measurements accordingly. It is a good idea to check the zero reading throughout the experiment.



Physical variations (random) - It is always wise to obtain multiple measurements over the entire range being investigated. Doing so often reveals variations that might otherwise go undetected. If desired, these variations may be cause for closer examination, or they may be combined to find an average value.



Parallax (systematic or random) - This error can occur whenever there is some distance between the measuring scale and the indicator used to obtain a measurement. If the observer's eye is not squarely aligned with the pointer and scale, the reading may be too high or low (some analog meters have mirrors to help with this alignment).



Instrument drift (systematic) - Most electronic instruments have readings that drift over time. The amount of drift is generally not a concern, but occasionally this source of error can be significant and should be considered.



Lag time and hysteresis (systematic) - Some measuring devices require time to reach equilibrium, and taking a measurement before the instrument is stable will result in a measurement that is generally too low. The most common example is taking temperature readings with a thermometer that has not reached thermal equilibrium with its environment. A similar effect is hysteresis where the instrument readings lag behind and appear to have a "memory" effect as data are taken sequentially moving up or down through a range of values. Hysteresis is most commonly associated with materials that become magnetized when a changing magnetic field is applied.



http://www2.southeastern.edu/Academics/Faculty/rallain/plab193/labinfo/Error_Analysis/06_Sources_of_Error.html
muma
2017-01-19 02:16:28 UTC
it ought to be the inaccuracy of the measured resistance of each twine... or you rounded off/up values on your computations.. (is that this nonetheless human errors?) ---although i realy think of an excellent variety of the % errors got here from human inaccuracy..(measurements, analyzing or the voltage meter, etc.)


This content was originally posted on Y! Answers, a Q&A website that shut down in 2021.
Loading...